Real cubic surfaces and real hyperbolic geometry
نویسندگان
چکیده
منابع مشابه
Explicit Real Cubic Surfaces
The topological classification of smooth real cubic surfaces is recalled and compared to the classification in terms of the number of real lines and of real tritangent planes, as obtained by L. Schläfli in 1858. Using this, explicit examples of surfaces of every possible type are given.
متن کاملComputing the Real Intersection of Cubic Surfaces
In this paper, we present a new algorithm for computing in a very efficient way the real intersection of three cubic surfaces. Our approach is based on the cylindrical decomposition ([8]) and the TOP algorithm ([10]) for analyzing the topology of a planar curve. We perform a symbolic preprocessing that allows us later to execute all numerical computations in a very accurate way.
متن کاملRational Parametrizations of Real Cubic Surfaces
Real cubic algebraic surfaces may be described by either implicit or parametric equations. Each of these representations has strengths and weaknesses and have been used extensively in computer graphics. Applications involving both representations include the efficient computation of surface intersections, and triangulation of curved surfaces. One particularly useful representation is the ration...
متن کاملLocal Geometry of Singular Real Analytic Surfaces
Let V ⊂ R be a compact real analytic surface with isolated singularities, and assume its smooth part V0 is equipped with a Riemannian metric that is induced from some analytic Riemannian metric on R . We prove: 1. Each point of V has a neighborhood which is quasi-isometric (naturally and ’almost isometrically’) to a union of metric cones and horns, glued at their tips. 2. A full asymptotic expa...
متن کاملAlgebraic surfaces and hyperbolic geometry
Many properties of a projective algebraic variety can be encoded by convex cones, such as the ample cone and the cone of curves. This is especially useful when these cones have only finitely many edges, as happens for Fano varieties. For a broader class of varieties which includes Calabi-Yau varieties and many rationally connected varieties, the Kawamata-Morrison cone conjecture predicts the st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus Mathematique
سال: 2003
ISSN: 1631-073X
DOI: 10.1016/s1631-073x(03)00287-5